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Abstract 
Fivefold and sevenfold symmetry operations are, oI 
course, incompatible with repetition by a lattice but, 
with the appearance of structures involving curved 
sheets, they and other non-crystallographic 
operations must now be taken into consideration as 
possibilities of non-Euclidean crystallography 
develop. Here are described the symmetry groups 
which might be called 732 and 73m and which may 
be found in two-dimensional manifolds. 

Structures with fivefold symmetry on the surface of 
a sphere have been familiar at least since the work 
of Caspar & Klug (1962). There are two ways of 
regarding the packing of units on the surface of a 
sphere: 

(a) they may be considered as forming a finite 
particle with the three-dimensional point symmetry 
groups 532 or 53m for which there are respectively 
(depending on whether mirror symmetry is forbidden 
or permitted) 60 and 120 fundamental regions or 
asymmetric units of pattern; or 

(b) they may be considered as a packing in two- 
dimensional curved space of non-Euclidean metric. 
This approach enables us to bring sevenfold (and 
higher) symmetry within the compass of crystal- 
lography. 

The curvature arises because five units, which may 
be equilateral triangles, pack around a fivefold axis 
to give an icosahedron. If the edges of this icosahe- 
dron are projected radially on to the circumscribed 
sphere then a tessellation of spherical triangles is 
obtained. The sum of the angles of a triangle made 
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up of geodesics on the surface is given by 

a +,8 + ~/= "n'+ S K dS, 

where K is the Gaussian curvature of the surface. As 
the curvature is positive the surface closes on itself 
and is of finite area. 

At any point in a surface there will be two principal 
curvatures K1 and K 2 in perpendicular planes. The 
mean (or first) curvature is J = (K1 +/(2) /2  and the 
Gaussian (or second) curvature is K = K1K2. 

In any extended plane tessellation of triangles, the 
mean coordination number of a point is six. If the 
coordination number is less than six then a spherical 
or positively curved elliptical space is obtained. 
However, if the mean coordination number is greater 
than six a curved two-dimensional space is obtained 
having hyperbolic or negative Gaussian curvature. A 
graphic illustration of a surface where the local 
coordination in the surface is greater than six is 
provided by a frond of crinkled seaweed such as 
Fucus letuca, where the area out to a distance r from 
any given point increases faster than 7rr 2. In fact, the 
circumference of a small circle on a surface of 
Gaussian curvature K is given by s ( r ) =  
27rr-(1/3)~rKr3+terms in r 5 and higher powers. If 
the space is curved and non-Euclidean then the 
parallel postulate of Euclid fails and the concept of 
repetition on a lattice must be abandoned. On the 
surface of a sphere the asymmetric units are repeated 
by rotations and reflections. In addition to the groups 
532 and 53m, the axial groups N, N2, N / m  are well 
known. 

The surface of a sphere is, of course, a finite space 
but surfaces with negative Gaussian curvature may 
be infinite. Some of these have recently come into 
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practical p rominence  with their appearance  as 
bui ld ing elements in l ipid and silicate structures 
(Andersson,  1983; Longley & McIntosh,  1983; 
Mackay,  1979, 1985). Periodic min imal  surfaces, first 
described by Schwarz (1890), are surfaces of  infinite 
extent which have J = 0 so that the Gauss ian  curvature 
K is everywhere non-positive. Just as for the surface 
of  a sphere, a p lanar  structure, such as a l ipid bilayer,  
can only be mapped  on to such a surface if  disclina- 
tions are regularly introduced (Mosseri & Sadoc, 
1982; Gaspard,  Mossed  & Sadoc, 1983; Nelson,  
1983). 

We wish to point  out now that a two-dimensional  
surface with constant hyperbol ic  curvature can, for 
example,  be tessellated with an infinite packing of 
identical  regular heptagonal  cells (Fig. 1) and that 
classical crystal lography can be extended in this 
direction. There are two different groups, which might 
be named  73 m and 732, respectively with and without 
mirror  planes.  The axes of  symmetry are sufficient to 
repeat the unit  of  symmetry  and, as on the surface 
of  a sphere,  t ranslat ion operations are not necessary. 

Fig. 1. The stereographic projection of a two-dimensional mani- 
fold of constant negative Gaussian curvature. The fundamental 
regions are triangles with angles ~-/2, ~r/3 and 7r/7 and 14 of 
these make up a regular heptagon, which is repeated to cover 
the infinite space according to the space group 73m. 

An infinite space of  constant negative Gauss ian  
curvature can be represented in stereographic projec- 
tion (Hilbert  & Cohn-Vossen,  1952). Angles are pre- 
served in the projection. It can be seen that the funda- 
mental  region is a triangle with angles ~-/2, zr/7 and 
zr/3. These angles leave a spherical  deficit per triangle 
of zr/42, corresponding to what is the least-curved 
two-dimensional  manifold .  

Other s imilar  groups, which might be named  642 
and 6m42, where the angles between geodesics of  the 
fundamenta l  triangle are ¢r/6, ¢r/4, and ¢r/2, with an 
angular  deficit of  ~r/12, have been drawn by Coxeter 
(1961). The groups 542 and 5m42 with angles in the 
fundamenta l  triangle of ~r/5, 7r/2 and Ir/4, with an 
angular  deficit of  ¢r/20 have been il lustrated by 
Schwarz (1890) and there are infinitely more. Such 
hyperbol ic  tessellations (with q p-gons meeting at a 
point) can occur when 1 / p +  1 /q  < 1/2 (Somerville,  
1914). 

Thanks are due to the referee whose extended and 
authoritative comments  tended to outweigh the con- 
tr ibution of  the present author. 
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